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Electromagnetic Imaging for an Imperfectly
Conducting Cylinder

Chien-Ching Chiu and Yean-Woei Kiang, Member, IEEE

Abstract —This paper presents a computational approach to

the imaging or inverse scattering of an imperfectly conducting
cylinder. A conducting cylinder of unknown shape and conduc-

tivity scatters the incident wave in free space and the scattered
field is recorded on a circle surrounding the scatterer. By
properly processing the scattered data, the shape and conductiv-
ity of the scatterer can be reconstructed. The problem is formu-
lated in the form of nonlinear integral equations which can be

solved numerically by the Newton-Kantorovitch algorithm. The

pseudoinverse technique is used to overcome the ill-posedness,
and the condition number of the matrix is also discussed.

Numerical examples are given to illustrate the capability of the
inversion algorithm using the simulated scattered fields in both

near and far zones. Multiple incident directions permit good
reconstruction of shape and, to a lesser extent, conductivity in

the presence of noise in measured data.

I. INTRODUCTION

T HE electromagnetic inverse scattering problem has

attracted increasing attention owing to interests in

noninvasive measurement and remote sensing. The devel-

opment of practical numerical techniques for the inverse

scattering problem is important and urgent. However,

inverse problems of this type are difficult to solve because

they are both ill posed and nonlinear. In the past few

years, several numerical techniques have been reported

for inverse scattering problems. Generally speaking, two

kinds of approaches have been developed. The first is an

approximate approach. It makes use of a diffraction to-

mography type of technique to determine the permittivity

of a dielectric object [1], [2] or employs the Bojarski

identity to recover the shape of a perfectly conducting

scatterer [3], [4]. However, this method requires some

approximations, such as the Born approximation for di-

electric objects and a physical optics approximation for

perfectly conducting scatterers. In contrast, the second

approach is to solve the exact equation of the inverse

scattering problem by numerical methods [5]-[10]. This
technique needs no approximation in formulation, but the

calculation is more complex than the approximate ap-

proach stated above. However, for metallic scatterers, the

aforementioned methods merely dealt with the case of

Manuscript received January 9, 1991; revised April 15, 1991. This

work was supported by the National Science Council, Republic of
China, under Grant NSC 79-0404-EO02-22.

The authors are with the Department of Electrical Engineering,
National Taiwan University, Taipei, Taiwan, Republic of China.

IEEE Log Number 9101651.

perfectly conducting objects, and there is still no rigorous

algorithm for the case involving lossy or imperfect metal-

lic scatterers.

Inverse problems usually reveal numerical instability

small noise contaminating the data may produce fairly

large error in the solution. In other words, these problems

are ill posed. To overcome the ill-posedness, several

numerical techniques have been reported, such as the

singular value decomposition method [9], [10], the pseu-

doinverse transformation [5], [11], and the penalized like-

lihood method [8]. From a mathematical viewpoint, the

singular value decomposition method and the pseudoin-

verse transformation are equivalent. Although the penal-

ized likelihood method seems different from the other

two methods, in many cases they lead to similar effects in

circumventing the ill-posedness.

In this paper, the inverse scattering from an imperfectly

conducting (i.e., 10SSY) cylinder in free space is investi-

gated. We propose an algorithm to recover not only the

shape but also the conductivity of a scatterer, by using

only the scattered field. This algorithm is based on the

Newton–Kantorovitch method. In Section II, the theoret-

ical formulation for the inverse scattering is presented.

We then introduce numerical techniques to solve the

integral equations and to overcome the ill-posedness, in

Section III. Numerical results for objects of different

shapes and conductivities are given in Section IV. Finally,

some conclusions are drawn in Section V.

H. THEORETICAL FORMULATION

Let us consider an imperfectly conducting cylinder with

conductivity u located in free space and let (CO, KO)

denote the permittivity and permeability respectively of

free space. The metallic cylinder with cross section

described in polar coordinates in the xy plane by the

equation p = J’(O) is illuminated by an incident plane

wave whose electric field vector is parallel to the z axis

(i.e., transverse magnetic, or TM, polarization). We

assume that the time dependence of the field is harmonic

with the factor exp(jw t). Let E, denote the incident field

with incident angle 4, as shown in Fig. 1. Then the

incident field is given by

E(P) = e-Jk(xs1n4+yc0sd)~ k2 = C&po. (1)

At an arbitrary point (x, y) in Cartesian coordinates or
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Y For an imperfectly conducting scatterer with finite

A
conductivity, the electromagnetic wave is able to pene-

trate into the interior of a scatterer, so the total tangen-

tial electric field at the surface of the scatterer is not

equal to zero. As described in [12] and [13], the boundary

condition for i his case can be approximated by assuming

that the total tangential electric field on the scat-

terer surface is related to the surface current density

through a surface impedance Z,(o):
*X

i?xi=iix(zj; ). (3)

where ii is the outward unit vector normal to the surface

of the scatterer. The scatterer of interest here is a non-

magnetic (w =’ M0), imperfectly conducting cylinder with

minimum radius of curvature a. The surface impedance is

expressed in [121 and [131 as Z.(a) = ~=. This

approximation is valid as long as lIm (NC)kal z> 1 and

m >> tieo, where “Ire” means taking the imaginary part,

and NC is the complex index of refraction of the conduc-

/

u
Fig. 1. Geometry of the problem in the (x, y) plane. tor, given by NC= 1 + — The boundary condition at

jtieo “

the surface of the’ scatterer given by (3) then yields an
(r,o) in pola~ cooLdinQes outside the scatterer, the scat- integral equation for J(o).
tered field, E,= E – E,, can be expressed by

(kJ(x-F(0)cos(01))2+( y-F(8’)sin(O’))2)J(0’]~@’

‘2) where

with

i-J(e) = – jo~o F’(e) + F2(f3)J,(e)

c’) is the Hankel function of the second kind ofwhere Ho

order zero, and J,(O) is the induced surface current

density, which is proportional to the normal derivative of

the electric field on the conductor surface. Note that the

scattered field for large values of r in (2) can be ex-

pressed in asymptotic form as

~–jkr

E,(x, y) N ~G,(6)

where G.(6) is known as the scattered far-field pattern.

ro(o, e’) = [F2(o)+ F’(e’)–2F(o)F(e’) cos(e–e’)]~.

For the direct scattering problem, the scattered field,

E,, is calculated by assuming that the shape and the

conductivity of the object are known. This can be achieved

by first solving J in (4) and calculating E. in (2).

Next, we consider the following inverse problem: given

the scattered field, Es, measured outside the scatterer,

determine the shape, F(O), and conductivity, u, of the

object. Since (2) is a Fredholm integral equation of the

first kind, the inverse problem of this type is ill posed.

Furthermore, this problem is complicated because of the

nonlinear dependence of (2) and (4) on F(O) and u In

our inverse method, the Newton–Kantorovitch algorithm

is used to solke the nonlinear integral equations (2) and

(4), and the pseudoinverse technique is employed to over-

come the ill-posedness.

First, we define the nonlinear functional systems as

(5)

2m~H(2)k~(x –F(0’)COS(6Y))2+ -(Y –F(fl’) sin(@) )2)” J(6’)dO’f(F, u, J)= E,(x, Y)+~ 4 0 ( (6)

and let the symbols ah and ~~ denote small variations of the quantities h and ~, respectively, caused by small
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variations in SF, h, and &l. By differentiating (5) and (6), one obtains

~h(F, u, J)=(-jk)(cosOsin4 +sindcos@)E,(F( 0),6)8F(0) -~2m8[~HA2)(kro) ]J(O') d@'

6f(F, m,J) =~2m8(~H~2)(k~( x- F(6’)cos(O’))2+(y -F’(6’) sin(0’))2)}J(6’) dO’

+
/

2T~H$)(k~(x -F(6')cos (@')) 2+(y-F(O') sin(O'))2) 8J(O')dO'
04

where

8[:H$)(kro)l=:[F(o)-F(o:cOs(o-o')`F(o)+F('')-F(::cOs(o-'')aF(e')lH'2)
6(~H&)[kj(x -F(O’)cos(@))2+(y -F(O’)sin(#))2))

.H\2)(k~(x -F(@’)cos(6’))2 +(y-F(tY) sin(O’))2).

(7)

(8)

To satisfy the boundav condition, ah is set to zero. By where

using the least-squares method to solve (7) and (8), one

obtains the differential increments of the shape function
L=

/
j~t’) kr (6n, &))d6’

and the conductivity in each iteration. Then we can solve ‘n *~fl~ 0 ( 0
this inverse problem accordingly by an iterative proce-

dure.

r
+j —

III. COMPUTATIONAL TECHNIQUE O;ou @(6m;YF’(e )
m

For numerical calculation of the direct problem, we use
the moment method [14] to solve (4) and (2) with pulse and AC, is the ith segment of the scatterer contour from

basis functions {P.(6))} for expanding

functions for testing. Let

J(O) = f B. P,,(O).
~=1

and Dirac delta O = 2z-(i – l)\Md to 6 = 2~i /M~. Note that the regular-

ization procedure is hidden in the truncation of the series

expansion of J. Also (2) becomes

‘AC. 4
Then (4) can be transformed into a matrix equation:

~=1

Md
“(kJ(~-~(O@~’))2 +(Y-~(0si@0)2)~ 6”.

E,(~(6~)>ow,) = ~ Lrn.B. (9)
~=1 (lo)
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To solve (7) and (8) for the inverse problem, we choose

the following expansions:

N N

T T

J(O) = f BnPn(e)
~=1

where An and AL are real numbers, and B. are complex

in general. Note that M must be different from M~ since

it is crucial that the synthetic data generated through a

forward solver not be like those obtained by the inverse

solver. In general, M~ is chosen Lo be 2M in our

tion. For convenience, a vector F is defined by

{

O<i<Nj2

(Fji = 2;:N,2, N/2+l<i<N

ff, i= N+l,

calcula-

By the point matching technique, (7) and (8) can be cast

into matrix form as

where

(aF), =

(Lf’)ij=

(Hi, l<i<Mjj=N+l

(d)ij=Ui, > l<i<M, l<j<M

(

c,, , l<i<M’,0<j<N\2

(@),, = C~,-N,z, l<i<M’, N/2+l<j<N

o, l<i<M’, j=N+l

(t)ij=Tij7 l<i<M’, l<j<M

where M’ is the number of measurement points. S~.,

s~n,H~, U~~, C~m, C~~, and T~. are appropriate coeffi-

cients that can be obtained by tedious mathematical ma-
nipulations (see the Appendix).

To satisfy the boundary condition, we set 8~ = O. After

eliminating 8E in (12), we get

aF=(d’– 7”ti-l”$)”8F~d”sF.

By using the least-squares method and the Newton–

Kantorovitch technique, one obtains the differential in-

crement /iF+ in each iteration:

(13)

where the dagger (~) denotes transpose and complex

conjugate, and “ Re” means taking the real part. Since

ele~ents of SIF are real quantities, we take the real parts

of Dt. b and ~t. ~~ Note that (13) is effective only for a

single incoming wave. To overcome the difficulty of ill-

posedness, we generalize the equation to the case of

incoming waves of multi-incident angles by using the

following formula:

(1.4)

-+
where ~, and ~, correspond to the ith incoming wave.

Although Re (fi)” fit) is a real, symmetric square ma-

trix, it is very difficult to ascertain whether the matrix

Re (bj. fit ) is invertible. Even when some care is taken to

select the locations of observation points, the matrix

Re (~~” fit) still may be numerically singular, and a solu-

tion of (14) is impractical. Therefore, regularization is

needed. Rather than finding a solution by directly solving

(14), an alternative approach is to find an estimated

solution such that

(15a)

is minimum with the condition

118711is minimum (15b)

where II” II denotes the norm. Equation (15) is then solved

by means of a pseudoinverse algorithm [11] which is based

on the Gram--Schmidt orthogonalization. The pseudolin-

verse transformation circumvents numerical instability in-

herent in inverse scattering and gener~tes a unique scdu-

tion for (15). The minimization of II8F II can to a certain

extent be interpreted as the smoothness requirement for

the boundary of F(6). Therefore, the condition of (15) is

minimization of the least-squares error between the mea-

sured field and the calculated field with the constrain, of

a smooth boundary. In reality, the matrix Re (fijo d~ ) is

not absolutely singular. However, in order to find the

pseudoinverse solufiion of (15), one has to set some of its

column vectors as linearly dependent, In our calculation,

the number (of dependent columns is chosen so as to

minimize the difference between the measured field and

the calculated field in the least-squares sense in each

iteration.

During the implementation of the iterative procedule,
we first choose the initial guess (F?)” and solve for (~ F)A

in (15) to obtain (F>~+l =(F3~ +(8Fl~, k = 0,1,2,3 “ “ “ .

Iteration continues until convergence is achieved. To

monitor convergence, after each iteration the calculated

profile, Fcal(0), and conductivity, u, are substituted into

(4) and (2) to produce the calculated scattered field,
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Fig. 2. Target profiles for example 1. The solid cuwe represents the
exact profile, while the dashed curves are calculated profiles in Iteration
process.

E~L(P), and the discrepancy

is determined, where kf~ is the total number of measure-

ment points and E~p the measured scattered field. Itera-

tion will be stopped when either DF changes by less than

2% in two successive iterations or DF is smaller than

10-5 in two successive iterations.

IV. NUMERICAL RESULTS

By a numerical simulation we illustrate the perfor-

mance of the proposed inversion algorithm and its sensi-

tivity to random error in the scattered field. Let us

consider an imperfectly conducting cylinder in free space

and a plane wave of unit amplitude incident upon the

object, as shown in Fig. 1. The frequency of the incident

wave is chosen to be 3 GHz; i.e., the wavelength A is 0.1

m. In the examples the size of the scatterer is about one

third the wavelength, so the frequency is in the resonance

range.

in our calculation three examples are considered. To
reconstruct the shape and conductivity of the cylinder, the

object is illuminated by four incident waves with incident

angles @ = 0°, 9@, 180°, and 270°, and the measurement

is taken on a circle of radius R’ at equal spacing. In our

cases, R is chosen either much larger than or smaller

than 2D’2/A, corresponding to the far-field or near-field

measurement respectively, where ~’ is the largest dimen-

sion of the scatterer. Note that for each incident angle

eight measurement points at equal spacing are used, and

there are ‘a total of 32 measurement points in each

simulation. The number of unknowns is set to 10 (i.e.,

fl’ + 2 = 10) and Jf is set to 100.

1.0 1

0.0

\

~
o 2 4 6 8

number of iterations
Fig. 3. Profile discrepancy (DR) and conductivity error (DSIG) in

iteration process for example 1.

TABLE I

CONDITION NUMBER OF MATRIX Re (fi~. fir) BEFORE
AND AFTER REGULARIZATION

Number of Condition Number Condition Number

Iterations Before Regularization After Regularization

o 30987 8

1 30018 16

2 29153 29153

3 28850 28850

4 28828 28828

5 28823 28823

6 28821 28821

7 28820 8

We now report on three different shape functions and

conductivities we have computed. Note that the recon-

structed result of the last iteration in each example is not

plotted since it cannot be distinguished from the exact

one by the naked eye.

In the first example, the shape function is chosen to be

F(6) = (0.026 – 0.009 cos 20) m with bronze material (i.e.,

u = 1.0X 107 S/m). From the far-field measurement sim-

ulation, the reconstructed shape function is plotted in Fig.

2 with the error shown in Fig. 3, while the error for the

reconstructed conductivity is also given in Fig. 3. Here

DR and DSIG, which are called profile and conductivity

discrepancies respectively, are defined as

(’
1/2

DR= + : [FcaI(oL) –F(ot)]2\F2(oL)
~=1 }

C*I

DSIG = u ‘o
w

where N’ is set to 60. The quantities DR and DSIG

p~lvide measures of how well F“] approximates ~(()) and

U approximates o respectively. The measurement ra-

dius, R’, in this case is 7 m. From Fig. 3, it is clear that

the reconstruction of the shape function and conductivity

is quite good. The quantity DSIG is 1 X 10–2 in the final

iteration. In addition, we also see that the reconstruction

of conductivity does not change rapidly toward the exact

value until DR is small enough. This can be explained by

the fact that the shape function makes a stronger contri-
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Fig. 5. Reconstructed results for example 2. (a) The solid curve repre-

sents the exact profile, while the dashed curves are calculated profiles in
iteration process. (b) Profile discrepancy (DR) and conductivity error

(DSIG) in iteration process.

bution to the scattered field than the conductivity does. In

other words, the reconstruction of the shape function has

a higher priority than the reconstruction of the conductiv-

ity.

Th~ c~rresponding condition number of the matrix

Re (D$. D,) in each iteration is listed in Table I. Listed in

0.02 :

0.00:

–0.02 :

–0.04
~

——
.—
----
... .. . ..

exact
initial
1 St

-O. O~o&,,,,,,,,, T,,,,fr,,,,ll,,,,,,,,, ~
-0.04 -0.02 0.00 0.02 0.04

(a)

1.0 1

0,0L,-??\$\\\
‘b.

‘.
$’

0 2 4 6 8
number of iterations

(tr)
Fig. 6. Reconstructed results for example 3. (a) The solid curve repre-

sents the exact profile, while the dashed curves are calculated profiles in

iteration process. (b) Profile discrepancy (DR) and conductivity e] ror

(DSIG) in iteraticm process.

the second column are the condition numbers before

regularization (i.e., before using pseudoinverse transfor-

mation), while in the third column are those after regullar-

ization. From this table and Fig. 3, we can see that the

DSIG varies considerably between the ith and (i+ l)th.

iterations onlly when the condition number does not

change after using the pseudoinverse transformation in

the ith iteration. This is due to the fact that the adjust-

ment of the conductivity during iteration i~ de~erminedl by

the smallest eigenvalue of the matrix Re (~}. l)f). In other

words, as thle pseudoinverse transf~rm~tion sets the

smallest eigenvalue of the matrix Re (~~ o~t) to zero, i.e.,

the condition number is changed, the conductivity of the

object will not be altered.

For investigating the effect of noise, we add to each

complex scattered field ~,(~) a quantity b + cj, where b

and c are independent random numbers having a uniform

distribution over O to the noise level times the R.M.S.

value of scattered field. The noise levels applied include
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10-4, 10-3, 10-2, 10-1, 2X10-1, and 4X10-I. The nu-

merical results are shown in Fig. 4. Since DSIG is too

large at high noise level, it is not plotted at a noise level

greater than 10’3 in this figure. This shows that the effect

of noise is tolerable for noise levels below 10 – 4.

Next, we reconstruct the object by using scattered fields

in the near zone. All parameters are the same as those in

the far-field measurement, except that the measurement

radius, R’, is chosen as 0.06 m. The quantity DSIG is

2 X 10-3 in the final iteration. It is clear that the recon-
structed results are better than those obtained by using

far-field data.

In the second example, the shape function is chosen as

F(6) = (0.03+0.003 COS20 +0.003 COS30) m, whereas alu-

minum material is selected (i.e., CT= 3.54x 107 S/m). R’

is chosen as 7 m. The purpose of this example is to show

that our method is able to reconstruct a scatterer whose

shape function is not symmetrical about the y axis. Satis-

factory results are shown in Fig. 5.

In the third example, the shape function is selected to

be I?(O)= (0.03+ 0.002 cos40 + 0.005 sin20) m with brass

material (i.e., m = 1.57X 107 S/m), and R’ is chosen as 7

m. Note that the shape function is not symmetrical about

either the x axis or the y axis. This example has further

verified the reliability of our algorithm. Refer to Fig. 6 for

details.

From the above three examples, we can conclude that

our imaging or inverse scattering algorithm is accurate

and can be implemented numerically.

V. CONCLUSIONS

We have proposed an algorithm for reconstructing the

shape and conductivity of a metallic object through

knowledge of scattered field. The Newton–Kantorovitch

algorithm and the moment method have been used to

transform the nonlinear integral equations into matrix

form. Then these matrix equations are solved by the

pseudoinverse transformation to obtain a stable approxi-

mate solution. By means of the above numerical tech-

niques, good reconstruction is obtained from the scat-

tered field both with and without additive random noise.

Several examples have illustrated that the inversion algo-

rithm gives accurate reconstruction from measured data

simulated numerically in near and far zones. Numerical

results also illustrate that the conductivity is more sensi-

tive to noise than the shape function is,

APPENDIX

Given in the following are the matrix elements in (11)

and (12):

S~. = (– jk)(cos O~sin4 +sin O~cos@)El(F’(O~ ), Om)cos(rzOn)

+P v z~jk f’(@m)- F’(O’)COS(Om -O’)
/ H;2)(kro(@m,o’))cos(nom)J(o’) de’,.
04 ro(~m,o’)

+P v z~jk F(W) -F(61m)COS(6m– 6’)
J H/2)( kro(OM,0’)) cost dt)’. .
L-IT ro(%, 6’)

r J(%J
+j —@L(@(om)+F2(t)m))

,[$’(f3m)cos(rz0m) -F’’(0m)rzsin(ndm)]

+P v z~jk F(Om)– F(@’)COS(Om– e’)
! H~2)(kro((l~,0’) )sin(nd~)J(@)d@. .
OT ro(%, ~’)

+P v Zmjk F(o’)– F(o~)cos(on– o’)

J
H~2)(kro(On, f3’))sin (ntY).1(0’) df)’. .

04 ro(om,~’)

r J(%-2)
+j —L (@((iQ+F2(f)m)),[~(Om)sin(n@m) +F’(Om)ncos(nom)]
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F(O’)–(x~cos O’ + ynsin#)
Cmn . ~z”;

~(x~-F(#)cos(6’) )2+(yn- F(/3’)sin(O’))2

(“Hf’) k~(xm-F(6') cos(6'))2+ (ym-F(O')sin(O' ))2)cos(nO')J(8' )dO'

~, _ 2V–.X

I

F(O’)–(xncos#+ y~sin f?’)

mn —
o 4 ~(xM-F(6’)cos(6))2+ (yn-F(0)sin(0))2

(
“H?) k~(xm-F(O') cos(0'))2+ (~7m-F(O') sin(O'))2) sin(nO')J(O')d6'

(4(Tm. = jAC :M$’) k Xm -F(0’)cos(6’))2 +(ym-F(tY) sin(fY))2)d6’.
n

Here “P. V.” denotes the Cauchy principal value. In- 1[12] F. M. Tesche, “On the inclusion of loss in time domain solutions, of

deed, the corresponding integrals have singularities of the electromagnetic interaction problems,” IEEE Trans. Electromagn.

form 1/(9 – 0’) when 0 ~ f3’,
Compat., vol. 32, pp. 1-4, 1990.

and thus these tYPe~ of I[ls] E. C. Jot-&n and K. G. Balmain, Electromagnetic Waues and

integrals are evaluated as Cauchy principal values. Radiating Systems. Englewood Cliffs, NJ: Prentice-Hall, 1968.

[14] R. F. Barrington. Field Comzrutation bv Moment Methods. New
York MacM~larr: 1968. - -

[1]

[2]

[3]

[4]

[51

[61
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