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Electromagnetic Imaging for an Imperfectly
Conducting Cylinder

Chien-Ching Chiu and Yean-Woei Kiang, Member, IEEE

Abstract —This paper presents a computational approach to
the imaging or inverse scattering of an imperfectly conducting
cylinder. A conducting cylinder of unknown shape and conduc-
tivity scatters the incident wave in free space and the scattered
field is recorded on a circle surrounding the scatterer. By
properly processing the scattered data, the shape and conductiv-
ity of the scatterer can be reconstructed. The problem is formu-
lated in the form of nonlinear integral equations which can be
solved numerically by the Newton—-Kantorevitch algorithm. The
pseudoinverse technique is used to overcome the ill-posedness,
and the condition number of the matrix is also discussed.
Numerical examples are given to illustrate the capability of the
inversion algorithm using the simulated scattered fields in both
near and far zones. Multiple incident directions permit good
reconstruction of shape and, to a lesser extent, conductivity in
the presence of noise in measured data.

1. INTRODUCTION

HE electromagnetic inverse scattering problem has

attracted increasing attention owing to interests in
noninvasive measurement and remote sensing. The devel-
opment of practical numerical techniques for the inverse
scattering problem is important and urgent. However,
inverse problems of this type are difficult to solve because
they are both ill posed and nonlinear. In the past few
years, several numerical techniques have been reported
for inverse scattering problems. Generally speaking, two
kinds of approaches have been developed. The first is an
approximate approach. It makes use of a diffraction to-
mography type of technique to determine the permittivity
of a dielectric object [1], [2] or- employs the Bojarski
identity to recover the shape of a perfectly conducting
scatterer [3], [4]. However, this method requires some
approximations, such as the Born approximation for di-
electric objects and a physical optics approximation for
perfectly conducting scatterers. In contrast, the second
approach is to solve the exact equation of the inverse
scattering problem by numerical methods [S]-[10]. This
technique needs no approximation in formulation, but the
calculation is more complex than the approximate ap-
proach stated above. However, for metallic scatterers, the
aforementioned methods merely dealt with the case of
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perfectly conducting objects, and there is still no rigorous
algorithm for the case involving lossy or imperfect metal-
lic scatterers.

Inverse problems usually reveal numerical instability:
small noise contaminating the data may produce fairly
large error in the solution. In other words, these problems
are ill posed. To overcome the ill-posedness, several
numerical techniques have been reported, such as the
singular value decomposition method [9], [10], the pseu-
doinverse transformation [5], {11], and the penalized like-
lihood method [8]. From a mathematical viewpoint, the
singular value decomposition method and the pseudoin-
verse transformation are equivalent. Although the penal-
ized likelihood method seems different from the other
two methods, in many cases they lead to similar effects in
circumventing the ill-posedness.

In this paper, the inverse scattering from an imperfectly
conducting (i.e., lossy) cylinder in free space is investi-
gated. We propose an algorithm to recover not only the
shape but also the conductivity of a scatterer, by using
only the scattered field. This aigorithm is based on the
Newton—Kantorovitch method. In Section II, the theoret-
ical formulation for the inverse scattering is presented.
We then introduce numerical techniques to solve the
integral equations and to overcome the ill-posedness, in
Section III. Numerical results for objects of different
shapes and conductivities are given in Section IV. Finally,
some conclusions are drawn in Section V.

II. THEORETICAL FORMULATION

Let us consider an imperfectly conducting cylinder with
conductivity o located in free space and let (eg,u,)
denote the permittivity and permeability respectively of
free space. The metallic cylinder with cross section
described in polar coordinates in the xy plane by the
equation p = F(8) is illuminated by an incident plane
wave whose electric field vector is parallel to the z axis
(i.e., transverse magnetic, or TM, polarization). We
assume that the time dependerlge of the field is harmonic
with the factor exp(jwt). Let E, denote the incident field
with incident angle ¢, as shown in Fig. 1. Then the
incident field is given by

N
El(,—)) — e—jk(xsm¢+ycos¢)2 k2 — wZEO,LLO.

(1)

At an arbitrary point (x,y) in Cartesian coordinates or
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Fig. 1. Geometry of the problem in the (x, y) plane.

(r,0) in polar, coordinates outside the scatterer, the scat-
tered field, £, = E — E,, can be expressed by

2mJ
E(x,y)=- A WZHéZ)

(K (x = F(8') o3 (8))+ (v = F(#)sin (8))’ )70y der

@)
with

J(8) = — jouoV F2(8) + F(8) J,(0)

where H is the Hankel function of the second kind of
order zero, and J(0) is the induced surface current
density, which is proportional to the normal derivative of
the electric field on the conductor surface. Note that the
scattered field for large values of r in (2) can be ex-
pressed in asymptotic form as

—jkr

E(x,y)~ Jr

e |
(}S(0)=—Z 5617/442 eij(())cos(G—o)J(er)dOr (2)

where G,(8) is known as the scattered far-field pattern.

Gy(9)

W(F,o.J) = E(F(6),6) —fothéz)(kro)J(B’)dB’ —j
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For an imperfectly conducting scatterer with finite
conductivity, the electromagnetic wave is able to pene-
trate into the interior of a scatterer, so the total tangen-
tial electric field at the surface of the scatterer is not
equal to zero. As described in [12] and [13], the boundary
condition for this case can be approximated by assuming
that the total tangential electric field on the scat-
terer surface is related to the surface current density
through a surface impedance Z(w):

Ax E=ax(ZJ). (3)
where 7 is the outward unit vector normal to the surface
of the scatterer. The scatterer of interest here is a non-
magnetic (u = ), imperfectly conducting cylinder with
minimum radius of curvature a. The surface impedance is
expressed in [12] and [13] as Z(w)=+/jop,/o. This
approximation is valid as long as [Im(N,)ka|>1 and
o > wey, where “Im” means taking the imaginary part,
and N, is the complex index of refraction of the conduc-

1+

. The boundary condition at

jweg
the surface of the scatterer given by (3) then yields an
integral equation for J(8):

tor, given by N, =

E(F(0).6) = [T L HE (k) 1(0) d0
0

) J(6)
TV onge VF2(8)+ F?(0) “

where

op-

ro(8,8') = [F2(0) + F*(8) —2F(8)F(8) cos (8 — 6)]".

For the direct scattering problem, the scattered field,
E,, is calculated by assuming that the shape and the
conductivity of the object are known. This can be achieved
by first solving J in (4) and calculating E, in (2).

Next, we consider the following inverse problem: given
the scattered field, E,, measured outside the scatterer,
determine the shape, F(#), and conductivity, o, of the
object. Since (2) is a Fredholm integral equation of the
first kind, the inverse problem of this type is ill posed.
Furthermore, this problem is complicated because of the
nonlinear dependence of (2) and (4) on F(6) and o. In
our inverse method, the Newton-Kantorovitch algorithm
is used to solve the nonlinear integral equations (2) and
(4), and the pscudoinverse technique is employed to over-
come the ill-posedness.

First, we define the nonlinear functional systems as

7(0)
F>(8)+ F(9)

(5)

WO

F(F,o,0)=E(x,y) +f02w{IH(§2)(k\/(x —F(8')cos () +(y — F(0')sin(#))* ) - 1(8") o'

(6)

and let the symbols 8k and 8f denote small variations of the quantities % and f, respectively, caused by small
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variations in 8F, 8o, and 8J. By differentiating (5) and (6), one obtains

Sh(F,a,J) = (— jk)(cos8sin @ +sincos ¢) E,( F(8),6) 8F(6) ~[()2”5[£H52>(kr0)]J(0') de’

5J(0) j o1 J(0)

27Tj ]
— H Nde — j
(T HE (kro) 51(8) i/ oo

J(0)

. J
Ve (i o)

S [F(6)3F(0)+ F'(9) 5F'(6)]

— — do
VF2(0)+ F*(8) "2V oo o VF?(6) + F*(8)

(7

Sf(F,o,J) =/02175{—£:H(§2)(k\/(x — F(0')cos (0')) 2+ (y — F(0')sin(9)) )}J(O’) e’

+f(f” HP(k\ (x = F(0))cos () + (y = F(8))sin ()" | 87(0') do

4
where

P F(8)— F(8)cos (0 — ')
5[%}1{)_}(”0)}: ; (9) ) cos (

Ty

SF(8)+

(8)

F(0')— F(0)cos(6—190")

5F(0’)}H1(2)(k”0)

6{%H(§2)(k\/(x - F(H’)cos(@’))2+(y - F(G’)sin(ﬁ?’))2 )}

F(0')—(xcos@ +ysing')

4 ( \/(x—F(B’)cos(G’))er(y —F(H/)sin(ﬁ"))2

5F(0')

HP(ky (x = F(#") cos (8)) 7+ (v — F(8)sin ()7 ).

To satisfy the boundary condition, 6/ is set to zero. By
using the least-squares method to solve (7) and (8), one
obtains the differential increments of the shape function
and the conductivity in each iteration. Then we can solve
this inverse problem accordingly by an iterative proce-
dure.

III. CoMpPUTATIONAL TECHNIQUE

For numerical calculation of the direct problem, we use
the moment method [14] to solve (4) and (2) with pulse
basis functions {P(8)} for expanding and Dirac delta
functions for testing. Let

My
n=1
Then (4) can be transformed into a matrix equation:

Md
EI(F(em)’0n1)= Z Lman

n=1

©)

where

h
i

j
~HP(kry(8,,,6'))do
o= [ o8- 0)

j 6}’)‘l}’l
oo \[F2(8,)+ F*(6,)

+J

and AC, is the ith segment of the scatterer contour from
0=27(i-1)/M, to 6 =2mi /M,. Note that the regular-
ization procedure is hidden in the truncation of the series
expansion of J. Also (2) becomes

LH(SZ)

M,
Es(?)z— ZBn ac 4

n=1

(kY (5= F(8') cos(8))*+ (v = F(6') sin(9")) ) 6.
(10)
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To solve (7) and (8) for the inverse problem, we choose
the following expansions:
N N
2 2
F(8)= Y, A,cos(n8)+ ¥, A4, sin(no)

n=20 n=1

M
7(6)= Y. B,B,(6)
n=1

where A4, and A, are real numbers, and B, are complex
in general. Note that M must be different from M, since
it is crucial that the synthetic data generated through a
forward solver not be like those obtained by the inverse
solver. In general, M, is chosen to be 2M in our calcula-
tion. For convenience, a vector F is defined by

A, 0<i<N/2
(F)i={Ai_n, N/2+1<i<N
o, i=N+1.

By the point matching technique, (7) and (8) can be cast
into matrix form as

oh=S8"-8F+U-8 (11)
6f=C"8F+T-86B (12)
where
04, 0<i<N/2
— SA,I N/2» N/2+1<1<N
(3F),= o, i=N+1
(6B),=6B, 1<i<M
Sijs 1<i<M,0< <N/2
‘ (§’)11 :j—N/27 I1<i<M,N/2+1<j<N
H;, 1<i<M,j=N+1
(0);=U, 1<i<M,1<j<M
Ciy I<i<M',0<j<N/2
(é,)u= Cl{]—N/Z) 1<i<M',N/R2+1<j<N
0, 1<isM',j=N+1
(T)if=Tij7 1<i<sM,1<j<M

where M’ is the number of measurement points. S,
Sron> Hoy Uy Cos Cros and T, are appropriate coeffi-
cients that can be obtained by tedious mathematical ma-
nipulations (see the Appendix).

To satisfy the boundary condition, we set Sh=0. After

eliminating 858 in (12), we get

8f=(C' -

By using the least-squares method and the Newton-
Kantorovitch technique, one obtains the differential in-

P-0-1.§)-5F2 D-oF.
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crement 8F in each iteration:
8F = ~[Re D" D] (13)

where the dagger () denotes transpose and complex
conjugate, and “Re” means taking the real part. Since
elen}ents of 8F are real quantities, we take the real parts
of DD and D' f. Note that (13) is effective only for a
single incoming wave. To overcome the difficulty of ill-
posedness, we generalize the equation to the case of
incoming waves of multi-incident angles by using the
following formula:

- -1
SF=— [Re(m-ﬁ1+z§;-ﬁ2+ )]

_1-Re[DAT'f]

'Re[DA{-f[+ﬁ§-f;+ ]

“Re[)] (14)

where D, and f, correspond to the ith incoming wave.

Although Re(D!-D,) is a real, symmetric square ma-
trix, 1t ‘§ very difficult to ascertain whether the matrix
Re(D;"D,) is invertible. Even when some care is taken to
select the locations of observation points, the matrix
Re(ﬁf-ﬁ,) still may be numerically singular, and a solu-
tion of (14) is impractical. Therefore, regularization is
needed. Rather than finding a solution by directly solving
(14), an alternative approach is to find an estimated
solution such that

s [Re Di-D )]

|Re[B7-B,] 57 +Re [ 3] (15a)
is minimum with the condition
I8 F]l is minimum (15b)

where |-]] denotes the norm. Equation (15) is then solved
by means of a pseudoinverse algorithm [11] which is based
on the Gram--Schmidt orthogonalization. The pseudoin-
verse transformation circumvents numerical instability in-
herent in inverse scattering and generates a unique solu-
tion for (15). The minimization of ||5F] can to a certain
extent be interpreted as the smoothness requirement for
the boundary of F(8). Therefore, the condition of (15) is
minimization of the least-squares error between the mea-
sured field and the calculated field with the consAtraiAnt of
a smooth boundary. In reality, the matrix Re(D]:D,) is
not absolutely singular. However, in order to find the
pseudoinverse solution of (15), one has to set some of its
column vectors as linearly dependent. In our calculation,
the number of dependent columns is chosen so as to
minimize the difference between the measured field and
the calculated field in the least-squares sense in each
iteration.

During the implementation of the iterative procedure
we first choose the initial guess (F)° and solve for (5F )"
in (15) to obtain (F)**! =(F* +(6F)*, k=0,1,2,3 -
Iteration continues until convergence is achieved. To
monitor convergence, after each iteration the calculated
profile, F°(9), and conductivity, o, are substituted into
(4) and (2) to produce the calculated scattered field,
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Fig. 2. Target profiles for example 1. The solid curve represents the
exact profile, while the dashed curves are calculated profiles in 1teration
process.

E&\(7), and the discrepancy

, a 1/2
DE=|— ¥ |E(7,) - E(7,) [ /| E*(,) "

t m=1

is determined, where M, is the total number of measure-
ment points and E&® the measured scattered field. Itera-
tion will be stopped when either DF changes by less than
2% in two successive iterations or DF is smaller than
1077 in two successive iterations.

1V. Numericar ResurTs

By a numerical simulation we illustrate the perfor-
mance of the proposed inversion algorithm and its sensi-
tivity to random error in the scattered field. Let us
consider an imperfectly conducting cylinder in free space
and a plane wave of unit amplitude incident upon the
object, as shown in Fig. 1. The frequency of the incident
wave is chosen to be 3 GHz; i.e., the wavelength A is 0.1
m. In the examples the size of the scatterer is about one

third the wavelength, so the frequency is in the resonance

range.

In our calculation three examples are considered. To
reconstruct the shape and conductivity of the cylinder, the
object is illuminated by four incident waves with incident
angles ¢ =0°, 90°, 180°, and 270°, and the measurement
is taken on a circle of radius R’ at equal spacing. In our
cases, R’ is chosen either much larger than or smaller
than 2D'? /A, corresponding to the far-field or near-field
measurement respectively, where D' is the largest dimen-
sion of the scatterer. Note that for each incident angle
eight measurement points at equal spacing are used, and
there are ‘a total of 32 measurement points in each
simulation. The number of unknowns is set to 10 (i.e.,
N +2=10) and M is set to 100.
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Fig. 3. Profile discrepancy (DR) and conductivity error (DSIG) in
iteration process for example 1.

TABLE 1

Conprtion NumBER oF MaTrix Re( D] D,) BEForRE
AND AFTER REGULARIZATION

Number of Condition Number Condition Number
Tterations Before Regularization After Regularization

0 30987 8

1 30018 16

2 29153 29153

3 28850 28850

4 28828 28828

5 28823 28823

6 28821 28821

7 28820 8

We now report on three different shape functions and
conductivities we have computed. Note that the recon-
structed result of the last iteration in each éxample is not
plotted since it cannot be distinguished from the exact
one by the naked eye.

In the first example, the shape function is chosen to be
F(8)=1(0.026—0.009cos26) m with bronze material (i.c.,
o =1.0%x10" S/m). From the far-field measurement sim-
ulation, the reconstructed shape function is plotted in Fig.
2 with the error shown in Fig. 3, while the error for the
reconstructed conductivity is also given in Fig. 3. Here
DR and DSIG, which are called profile and conductivity
discrepancies respectively, are defined as

172

1 N

DR = {—, X [Feio,)— F(0)]"/F2(6,)
N =1

O.Cal_o,

DSIG =|——

o

where N’ is set to 60. The quantities DR and DSIG
provide measures of how well F<! approximates F(0) and
o approximates o respectively. The measurement ra-
dius, R', in this case is 7 m. From Fig. 3, it is clear that
the reconstruction of the shape function and conductivity
is quite good. The quantity DSIG is 1xX10~2 in the final
iteration. In addition, we also see that the reconstruction
of conductivity does not change rapidly toward the exact
value until DR is small enough. This can be explained by
the fact that the shape function makes a stronger contri-




CHIU AND KIANG: ELECTROMAGNETIC IMAGING FOR IMPERFECTLY CONDUCTING CYLINDER

0.8 -?
=) ] eeeee DR
S -
1) .
()] 4
o 0.4 —
¢ .
.pag ~—
- N
E .
3 ] ©
St - //
7
3 o
.2
0.0 -‘v T T T T =T TTTTIIT T 71 1"
10 10~ 10 * 10
noise level
Fig. 4. Profile discrepancy (DR) and conductivity error (DSIG) for
example 1 as functions of noise level.
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Fig. 5. Reconstructed results for example 2. (a) The solid curve repre-
sents the exact profile, while the dashed curves are calculated profiles in
iteration process. (b) Profile discrepancy (DR) and conductivity error
(DSIG) in iteration process.

bution to the scattered field than the conductivity does. In
other words, the reconstruction of the shape function has
a higher priority than the reconstruction of the conductiv-
ity.

The corresponding condition number of the matrix
Re(D}-D,) in each iteration is listed in Table 1. Listed in

1637
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Fig. 6. Reconstructed results for example 3. (a) The solid curve repre-
sents the exact profile, while the dashed curves are calculated profiles in
iteration process. (b) Profile discrepancy (DR) and conductivity error
(DSIG) in iteration process.

the second column are the condition numbers before
regularization (i.e., before using pseudoinverse transfor-
mation), while in the third column are those after regular-
ization. From this table and Fig. 3, we can see that the
DSIG varies considerably between the ith and (i +1th.
iterations only when the condition number does not
change after using the pseudoinverse transformation in
the ith iteration. This is due to the fact that the adjust-
ment of the conductivity during iteration is determined by
the smallest eigenvalue of the matrix Re (D] D,). In other
words, as the pseudoinverse transfqrma;ution sets the
smallest eigenvalue of the matrix Re (D] D,) to zero, i.e.,
the condition number is changed, the conductivity of the
object will not be altered.

For investigating the effect of noise, we add to cach
complex scattered field E(7) a quantity b + ¢j, where b
and ¢ are independent random numbers having a uniform
distribution over 0 to the noise level times the R.M.S.
value of scattered field. The noise levels applied include
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1074 1073, 1072, 1071, 2x 107!, and 4x10~!. The nu-
merical results are shown in Fig. 4. Since DSIG is too
large at high noise level, it is not plotted at a noise level
greater than 102 in this figure. This shows that the effect
of noise is tolerable for noise levels below 1074

Next, we reconstruct the object by using scattered fields
in the near zone. All parameters are the same as those in
the far-field measurement, except that the measurement
radius, R’, is chosen as 0.06 m. The quantity DSIG is
2x1072 in the final iteration. It is clear that the recon-
structed results are better than those obtained by using
far-field data.

In the second example, the shape function is chosen as
F(8) =(0.0340.003cos 26 +0.003 cos 38) m, whereas alu-
minum material is selected (i.e., o = 3.54x107 S/m). R’
is chosen as 7 m. The purpose of this example is to show
that our method is able to reconstruct a scatterer whose
shape function is not symmetrical about the y axis. Satis-
factory results are shown in Fig. 5.

In the third example, the shape function is selected to
be F(8)=(0.03+0.002cos48 +0.005sin268) m with brass
material (i.c., 0 =1.57X 107 S/m), and R’ is chosen as 7
m. Note that the shape function is not symmetrical about
either the x axis or the y axis. This example has further
verified the reliability of our algorithm. Refer to Fig. 6 for
details.

WAVE THEORY AND TECHNIQUES, VOL. 39, NO. 9, SEPTEMBER 1991

From the above three examples, we can conclude that
our imaging or inverse scattering algorithm is accurate
and can be implemented numerically.

V. CONCLUSIONS

We have proposed an algorithm for reconstructing the
shape and conductivity of a metallic object through
knowledge of scattered field. The Newton—Kantorovitch
algorithm and the moment method have been used to
transform the nonlinear integral equations into matrix
form. Then these matrix equations are solved by the
pseudoinverse transformation to obtain a stable approxi-
mate solution. By means of the above numerical tech-
niques, good reconstruction is obtained from the scat-
tered field both with and without additive random noise.
Several examples have illustrated that the inversion algo-
rithm gives accurate reconstruction from measured data
simulated numerically in near and far zones. Numerical
results also illustrate that the conductivity is more sensi-
tive to noise than the shape function is.

APPENDIX

Given in the following are the matrix elements in (11)
and (12):

(F(6,,),6,,)cos(nd,,)

—0)

HP(kry(8,,,0"))cos(nb,)J(8') d6’

_0’)

HP(kry(8,,,0"))cos(n@)J(0") do’

S,.=(—Jjk)(cos8,sin¢ +sinb, cosp)E,
+P.V.[2W& F(8,)— F(8)cos(8,,
0 4 r0(0m70,)
-k F(8')—F(8,, 8,
+pv. [T (90 = FOn) cos(
o 4 rO(Gm’B’)
] J(o
hy [ (6,)
KT (VF(8,)+ F(6,) )

5[ F(6,,) cos(n8,,)— F'(6,,)nsin(nd,,)]

Shn=(—Jjk)(cos 8, sin¢ +sinb,, cosp)E,(F(6,,),0,,)sin(nd,,)

2 jk F(8,,)— F(0")cos(9,,

—-6)

HP(kry(8,,,6"))sin(no,,)J(8') d¢'

—6)

+P.V.
j[-) 4 ro(6,,,6")
=ik F(8')— F(8,,)cos(6,,
ppy, [ O F ) cos(
o 4 7o(6m>8')
I (Om)

H®(kry(8,,,0'))sin (no')J(8') d6’

)
T
WUy (

VF(6,)+ F(6,) )

5[ F(6,,)sin(nb,,)+ F'(6,,)ncos(né,,)]
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gt/ i1 J(6,n)
T2V emer 0 \F2(6,) + F(6,)
U, — f iHéz)(krO(O 0))do’ + j | O
mn ac,4 " ©koo \/F2(6,)+ F(6,)
- —Jjk F(¢)— xmcosf)’»+)}msin9’
Cmn,=/2 (6" ( )
0

4 (= F(8) 08 (8))+ (9, — F(8)sin (8))

HP (kY (x,, = F(8) 008 (6)) + (v, = F(8') sin(8'))" | cos (ne') J(8') o/

F(0')—~(x,,cos8" +y,sing")

fw VI

X~ F(8) c0s (8))"+ (3, = F(6')sin(¢))’

HP(kY (5, = F(8) c05(6))"+ (3, = F(0')sin(6")) ) sin (6"} (') o’

T ";fAan (2)(k\/(x —F(a')cos(a' ) + (Y — F(8)sin (8))° )d"’» |

Here “P.V.” denotes the Cauchy principal value. In-
“deed, the corresponding integrals have singularities of the
form 1/(6—6') when 68— ¢, and thus these types of
integrals are evaluated as Cauchy principal values.
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